Standard Specification for Vacuum Insulation Panels

This standard is issued under the fixed designation C1484; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers the general requirements for Vacuum Insulation Panels (VIP). These panels have been used wherever high thermal resistance is desired in confined space applications, such as transportation, equipment, and appliances.

1.2 Vacuum panels typically exhibit an edge effect due to differences between panel core and panel barrier thermal properties. This specification applies to composite panels whose center-of-panel apparent thermal resistivities (sec. 3.2.3) typically range from 87 to 870 m·K/W at 24°C mean, and whose intended service temperature boundaries range from −70 to 480°C.

1.3 The specification applies to panels encompassing evacuated space with: some means of preventing panel collapse due to atmospheric pressure, some means of reducing radiation heat transfer, and some means of reducing the mean free path of the remaining gas molecules.

1.4 Limitations:

1.4.1 The specification is intended for evacuated planar composites; it does not apply to non-planar evacuated self-supporting structures, such as containers or bottles with evacuated walls.

1.4.2 The specification describes the thermal performance considerations in the use of these insulations. Because this market is still developing, discrete classes of products have not yet been defined and standard performance values are not yet available.

1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health specifications and determine the applicability of regulatory limitations prior to use.

NOTE 1—For specific safety considerations see Annex A1.

2. Referenced Documents

2.1 ASTM Standards:

C165 Test Method for Measuring Compressive Properties of Thermal Insulations
C168 Terminology Relating to Thermal Insulation
C203 Test Methods for Breaking Load and Flexural Properties of Block-Type Thermal Insulation
C390 Practice for Sampling and Acceptance of Thermal Insulation Lots
C480 Test Method for Flexure Creep of Sandwich Constructions
C1045 Practice for Calculating Thermal Transmission Properties Under Steady-State Conditions
C1055 Guide for Heated System Surface Conditions that Produce Contact Burn Injuries
C1058 Practice for Selecting Temperatures for Evaluating and Reporting Thermal Properties of Thermal Insulation
C1114 Test Method for Steady-State Thermal Transmission Properties by Means of the Thin-Heater Apparatus
C1136 Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation
C1363 Test Method for Thermal Performance of Building Materials and Envelope Assemblies by Means of a Hot Box Apparatus
C1667 Test Method for Using Heat Flow Meter Apparatus to Measure the Center-of-Panel Thermal Resistivity of Vacuum Panels
D999 Test Methods for Vibration Testing of Shipping Containers
D1434 Test Method for Determining Gas Permeability Characteristics of Plastic Film and Sheeting

1 This specification is under the jurisdiction of ASTM Committee C16 on Thermal Insulation and is the direct responsibility of Subcommittee C16.22 on Organic and Nonhomogeneous Inorganic Thermal Insulations.

2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard’s Document Summary page on the ASTM website.
D2221 Test Method for Creep Properties of Package Cushioning Materials
D2126 Test Method for Response of Rigid Cellular Plastics to Thermal and Humid Aging
D3103 Test Method for Thermal Insulation Performance of Distribution Packages
D3763 Test Method for High Speed Puncture Properties of Plastics Using Load and Displacement Sensors
D4169 Practice for Performance Testing of Shipping Containers and Systems
E493 Test Methods for Leaks Using the Mass Spectrometer Leak Detector in the Inside-Out Testing Mode
F88 Test Method for Seal Strength of Flexible Barrier Materials

2.2 Other Standards:
ISO 8318 Packaging - Complete, Filled Transport Packages - Vibration Tests Using a Sinusoidal Variable Frequency
IEC68-2-6, Part 2, Test F, Vibration, Basic Environmental Testing Procedures
TAPPI T803Puncture Test of Containerboard

3. Terminology

3.1 Definitions—Terminology C168 applies to terms used in this specification.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 adsorbent—a component of some VIP designs, comprising a chemical or physical scavenger for gas molecules.

3.2.2 center-of-panel—a small area located at the center of the largest planar surface of the panel, equidistant from each pair of opposite edges of that surface.

3.2.3 center-of-panel apparent thermal resistivity—the thermal performance of vacuum panels includes an edge effect due to some heat flow through the panel barrier and this shunting of heat around the panel becomes more prevalent with greater panel barrier thermal conductivity, as shown in Fig. 1. For panels larger than a minimum size (as described in 11.4.1), the center-of-panel apparent thermal resistivity is the intrinsic core thermal resistivity of the VIP. This center-of-panel measurement is used for quality control, compliance verification, and to calculate the effective thermal performance of a panel. The effective thermal performance of a panel will vary with the size and shape of the panel.

3.2.3.1 Discussion—Apparent thermal resistivity, the inverse of apparent thermal conductivity, is used when discussing the center-of-panel thermal behavior and this value is independent of the panel thickness.

3.2.4 edge seal—any joint between two pieces of panel barrier material.

3.2.5 effective thermal resistance (Effective R-value)—this value reflects the total panel resistance to heat flow, considering heat flow through the evacuated region and through the panel barrier.

3.2.5.1 Discussion—Depending on the thermal conductivity and thickness of the panel barrier and the size of the panel, the effective thermal resistance of the panel over the edge to edge area may be significantly less than the thermal resistance measured or calculated at the center of the panel. The effective

FIG. 1 Side View of a Vacuum Insulation Panel Showing Edge Heat Flow and the Center-of-Panel Region
thermal resistance will also depend on the temperatures imposed on the two faces of the panel.

3.2.5.2 Discussion—Thermal resistance, the inverse of thermal conductance, is used when discussing the effective thermal performance of the panel. This value includes the effect of the actual panel dimensions, including the panel thickness.

3.2.6 effective thermal resistance after puncture—this value represents the effective thermal resistance of the panel in the event of a total panel barrier failure (complete loss of vacuum). The edge effect is still present after a puncture.

3.2.7 evacuated or vacuum insulations—insulation systems whose gas phase thermal conductivity portion of the overall apparent thermal conductivity has been significantly reduced by reduction of the internal gas pressure. The level of vacuum will depend on properties of the composite panel materials, and the desired effective thermal conductivity.6

3.2.8 panel barrier—the material that envelopes the evacuated volume and is used to separate the evacuated volume from the environment and to provide a long term barrier to gas and vapor diffusion.

3.2.9 panel core—the material placed within the evacuated volume in order to perform one or more of the following functions: prevent panel collapse due to atmospheric pressure, reduce radiation heat transfer, and establish interstitial spaces that are smaller in dimension than (or near to), the mean free path length of the remaining gas molecules. The thermal conductivity of the panel core, or \(\lambda_{core} \), is defined as the thermal conductivity of the core material under the same vacuum that would occur within a panel, but without the panel barrier material. This is the thermal conductivity that would be measured in the center of an infinitely large panel.

3.2.10 service life—The period of time over which the center-of-panel thermal conductivity meets the definition of a superinsulation. A standard-condition service life is defined as that period of time over which the center-of-panel thermal conductivity meets the definition of a superinsulation under standard conditions of 24°C and 50% relative humidity.

3.2.10.1 Discussion—The thermal resistance of a VIP degrades with time due to residual outgassing of VIP materials and gas diffusion through the panel barrier and edge seals. Both of these processes are affected by the service environment, most importantly by the service temperature and humidity in the surrounding air. The service life in hotter or more humid conditions may be shorter; conversely drier or colder environmental conditions can extend the life of the panel.

3.2.11 superinsulation—insulation systems whose center-of-panel thermal resistivity exceeds 87 m² · K/W measured at 24°C mean.

3.3 Symbols and Units—The symbols used in this test method have the following significance:

3.3.1 \(A \) = area, m².

3.3.2 \(g \) = specific outgassing rate, Pa-l/h · cm².

3.3.3 \(G \) = adsorbent capacity, Pa-m³.

3.3.4 \(k \) = gas permeance, m/h · Pa.

3.3.5 \(M \) = molecular weight, kg/mole.

3.3.6 \(P \) = pressure, Pa.

3.3.7 \(Q \) = volumetric flow rate, m³/h.

3.3.8 \(R \) = ideal gas constant, 8.315 J/g-mole · K.

3.3.9 \(T \) = temperature, K.

3.3.10 \(V \) = internal VIP free volume, m³.

3.3.11 \(\alpha \) = outgassing exponent.

3.3.12 \(\rho_v \) = density, kg/m³.

3.3.13 \(\tau \) = time, h.

3.3.14 Subscripts:

3.3.14.1 \(e \) = environmental.

3.3.14.2 \(i \) = refers to a specific gas, that is, \(P_i \) is the partial pressure of the \(i \)th gas.

3.3.14.3 \(\text{init} \) = initial.

3.3.14.4 \(u \) = limiting (after long time).

3.3.14.5 \(\text{after} \) = value after one h or value at standard temperature and pressure.

4. Ordering Information

4.1 Orders shall include the following information:

4.1.1 Title, designation, and year of issue of this specification,

4.1.2 Product name,

4.1.3 Panel size and effective R-value required,

4.1.4 Service environmental parameters: maximum temperature, average temperature, maximum relative humidity, average relative humidity,

4.1.5 Required service life,

4.1.6 Tolerance if other than specified,

4.1.7 Quantity of material,

4.1.8 Special requirements for inspection or testing, or both,

4.1.9 If packaging is other than specified,

4.1.10 If marking is other than specified,

4.1.11 Special installation instructions if applicable,

4.1.12 Required compressive resistance,

4.1.13 Required effective thermal resistance after puncture,

4.1.14 Any required fire characteristics,

4.1.15 Required creep characteristics,

4.1.16 Required edge seal strength, and

4.1.17 Required dimensional stability at service environmental conditions.

5. Materials and Manufacture

5.1 Panel Composite Design—The panel shall consist of a gas barrier layer(s), as described in 5.2, and an evacuated core material or system as described in 5.3. See Fig. 1. An engineered quantity of gas adsorbent is optional. It is not necessary that the panel design be symmetrical, depending upon end-use requirements.

5.2 Panel Barrier Composition—The panel barrier consists of one or more layers of materials whose primary functions are to control gas diffusion to the core, and to provide mechanical protection. Candidate panel barrier materials include metallic, organic, inorganic or a combination thereof depending on the level of vacuum required, the desired service life, and the intended service temperature regimes. Panel barrier materials

6 For further discussion on heat flow mechanisms in evacuated insulations, see Practice C740.
are selected to prevent outgassing, or at least to give off only those gases or vapors which can be conveniently adsorbed.

5.3 Panel Core Composition—The core shall comprise a system of cells, microspheres, powders, fibers, aerogels, or laminates, whose chemical composition shall be organic, inorganic, or metallic. Within the reticular portion of the core, subsystems such as honeycomb or integral wall systems are allowed.

Note 2—The function of the core composition or system is typically twofold: it reduces the radiative, solid, and gaseous heat transfer contributions to overall heat transfer, and it can provide a structural complement to the panel barriers. Core systems or densities will therefore vary for different anticipated end-uses and service temperature regimes.

6. Physical and Mechanical Properties

6.1 Compressive Resistance—The required compressive resistance shall be specified by the purchaser according to the application.

6.2 Effective Thermal Resistance (effective R-value)—Table 1 defines standard conditions and information that must be reported with the effective thermal resistance.

Note 3—Because the effective thermal resistance is affected by many variables, manufacturers may also provide thermal resistance data at other conditions. In addition to temperature, temperature gradient, and thickness effects, size and shape may have a significant impact on the effective thermal resistance of superinsulation panels, depending on the thermal conductivity of the panel barrier relative to that of the core. The effective thermal resistance can also be affected by temporary temperature excursions that could occur during panel installation, as discussed further in Appendix X2.

6.3 Effective Thermal Resistance After Puncture—This value represents the effective thermal resistance of the panel in the event of a panel barrier failure (that is, after the panel internal volume has reached ambient pressure) and shall be reported by the supplier.

6.4 Fire Characteristics—The fire properties of the vacuum insulation panel shall be addressed through fire test requirements that are specific to the end use.

6.5 Creep Characteristics—The creep properties of a VIP will determine its shape and thickness in an application where the VIP is subjected to an externally applied constant stress. This stress can be caused by the environmental temperature as well as by a mechanical load. The creep properties are important because the shape and thickness of the VIP directly affect its thermal performance. The required creep properties shall be specified by the purchaser according to the application.

6.6 Panel Barrier Permeance—The panel barrier permeance is required for the VIP Service Life calculations. The panel barrier permeance shall be measured and reported for individual gases of interest.

Table 1 Standard Effective Thermal Resistance Report Conditions and Related Information Requirements for New Vacuum Insulation Panels

<table>
<thead>
<tr>
<th>Panel Dimensions</th>
<th>Maximum use temperature</th>
<th>Maximum use humidity at 24°C</th>
<th>Projected standard-condition service life</th>
<th>Initial effective thermal resistance at 24°C and 50 % relative humidity</th>
</tr>
</thead>
</table>

Note 4—The panel barrier permeance may also be affected by the service environment.

6.7 Dimensional Stability at Service Conditions—The maximum allowable change in panel dimensions caused by the change from ambient to service environmental conditions shall be specified by the purchaser.

7. Dimensions and Tolerances

7.1 Dimensions—The dimensions shall be as agreed upon by the purchaser and supplier.

7.2 Tolerances—Tolerances shall be as agreed upon by the purchaser and supplier.

8. Workmanship and Finish

8.1 The insulation shall have no defects that adversely affect its service qualities and ability to be installed.

9. Sampling

9.1 Quality control records shall be maintained by the manufacturer, and will usually suffice in the relationship between the purchaser and the manufacturer. If they mutually agree to accept lots on the basis of quality control records, no further sampling is required.

9.2 Any alternate sampling procedure shall be agreed upon between the purchaser and the manufacturer.

10. Qualification Requirements

10.1 For the purpose of initial material or product qualification, insulation shall meet the physical and mechanical properties of Section 6.

10.2 Acceptance qualification for lots and shipments of qualified product shall be agreed upon by purchaser and supplier.

11. Test Methods

11.1 Properties of the insulation shall be determined in accordance with the following methods.

11.2 Compressive Resistance—Test Method C165 or another method acceptable to both the purchaser and supplier shall be used.

11.3 Panel Barrier Permeance—The panel barrier permeance for each gas of interest shall be measured using Test Method D1434, the method described in Appendix X3, or another method acceptable to both the purchaser and supplier. The effects of service temperature and humidity, any temperature excursion(s), and the chemical environment on the panel barrier permeance shall be considered.

11.4 Thermal Performance:

11.4.1 Center-of-Panel Thermal Resistivity—The center-of-panel thermal resistivity is a measured value that is used to approximate the thermal resistivity of the evacuated core region. Use Test Methods C177, C518, or C1114 in conjunction with Test Method C1667 and Practice C1045 to evaluate center-of-panel heat transfer properties. In the event of dispute, Test Method C177 shall be the referee method. Temperature differences shall be selected from Practice C1058. The mean...
test temperature shall be selected according to the standard reporting temperatures shown in Table 1. The mean thermal resistivity of the center-of-panel tested shall not be less than the manufacturer’s stated values.

Note 5—Due to low thermal diffusivity of some superinsulation, it may be necessary to increase the time required to reach steady-state heat flow in thermal resistance tests.

Note 6—For a sufficiently large panel, the flow through the panel barrier will be a relatively small portion of the flow measured at the center of panel, so that thermal conductivity measurements made at the center of the panel will represent the conductivity of the panel core region within an adequate margin of error. The center-of-panel thermal resistivity is often used along with information about the panel barrier material and panel geometry, to calculate the effective panel thermal resistance.

Note 7—The center-of-panel measurement can be used for quality control purposes. If panels are tested two weeks after manufacture as a part of quality-control program, this measurement will expose any panels with gross leaks.

11.4.1.1 The minimum panel size for this test is determined by the thermal conductivity of the panel barrier, the thickness of the panel barrier, the thermal conductivity of the core, and the size of the heat flux transducer or guarded hot plate surface used to make the measurement. Test Method C1667 provides a fuller discussion of the relationship between these factors.

11.4.1.2 Another method to determine the core conductivity uses an array of heat flux transducers in the heat flow meter apparatus. These measurements can be analyzed using a thermal modeling program to calculate the thermal resistivity of the filler or the magnitude of the thermal bridging through the panel barrier (1).

11.4.1.3 If Test Method C1363 is used to measure the effective panel thermal resistance of the full size panel, the center-of-panel thermal resistivity measurement is not required. However, if numerical models are used to predict the effective thermal performance for panels of other sizes, the center-of-panel thermal resistivity shall be measured.

11.4.2 **Effective Thermal Resistance:**

11.4.2.1 The effective thermal resistance differs significantly from the product of the center-of-panel resistivity and the thickness, and this system characteristic must take into account the details of the overall VIP design as well as its installation. The effective thermal resistance will vary over long periods of time. Therefore standard reporting conditions have been specified in Table 1. This issue is discussed further in 11.6.

11.4.2.2 Determine the effective thermal resistance of a full-size panel using either of the following two approaches:

11.4.2.2.1 Measure the effective thermal resistance using a calorimetric technique as described in Ref. (2), or Test Method C1363. In both cases the appropriate modeling corrections described in Ref. (3) shall be applied. The test temperatures shall be selected from Practice C1058. The mean test temperature shall be selected according to the standard reporting temperatures shown in Table 1.

11.4.2.2.2 Calculate the effective thermal resistance of a full-size panel by the use of finite element analysis, as described in Ref (1). For this analysis, the center-of-panel (or core) thermal conductivity and that of the panel barrier material shall be known.

11.4.2.3 A round-robin test examined the consistency of the various mathematical models used to calculate effective thermal resistance (10).

11.5 **Effective Thermal Performance after Puncture**—The panel barrier shall be punctured with a hole at least 6 mm in diameter and the panel interior shall be exposed to atmospheric pressure for at least seven days. Then the effective thermal resistance shall be measured as described in 11.4.2. The mean thermal resistance of the material tested shall not be less than the manufacturer’s stated values.

11.6 **Service Life**—The actual service life of a vacuum insulation panel is determined in large part by: the panel design and materials, the service environment, and the minimum acceptable thermal resistance. The standard-condition service life is defined as the period of time for which the panel will provide superinsulation performance in an environment of 24°C and 50% relative humidity. In making this determination, the manufacturer shall consider, at the stated standard environmental conditions, the following: the outgassing of the filler material, the outgassing and permeability of the panel barrier material, the permeability of the edge seals, and the performance of any adsorbent materials contained within the panel. The expected decrease in thermal resistance that occurs as the vacuum insulation panel ages shall be measured or computed from the relationship between thermal resistance and internal VIP pressure (for the appropriate mixture of gasses).

Note 8—The actual service life of a vacuum insulation panel can be shorter or longer than the standard-condition service life, depending on the service environment and the minimum required thermal resistance. Appendix X1 contains useful information about this complex issue.

11.7 **Creep Properties**—Test Methods C480 or D2221 or another method acceptable to both the purchaser and supplier shall be used.

11.8 **Dimensional Stability at Service Conditions**—Test Method D2126 shall be used.

11.9 **Other Tests**—Other test are appropriate for specific applications as discussed further in Appendix X3.

12. **Inspection**

12.1 Unless otherwise specified, Practice C390 shall govern the sampling and acceptance of material for conformance to inspection requirements. Exceptions to these requirements shall be stated in the purchase agreement.

13. **Rejection and Resubmittal**

13.1 Failure to conform to the requirements in this specification shall constitute cause for rejection. Report rejection to the manufacturer or supplier promptly and in writing.

13.2 In case of shipment rejection, the manufacturer shall have the right to reinspect shipment and resubmit the lot after removal of that portion not conforming to requirements.

7 The boldface numbers given in parentheses refer to a list of references at the end of the text.
14. Packaging and Marking

14.1 Packaging—Unless otherwise specified, the insulation shall be supplied in the manufacturer’s standard commercial packages to assure contents are undamaged at delivery.

14.2 Marking—Unless otherwise specified, each package shall be marked with the:

14.2.1 Material name,
14.2.2 Manufacturer name or trademark,
14.2.3 Handling instructions for the purchaser to follow to avoid panel damage once the product is removed from the manufacturer’s package,
14.2.4 Storage Instructions for the purchaser to follow to avoid panel damage once the product is delivered,

Note 9—The storage time is a part of the panel service life and the storage environmental conditions can affect panel performance as discussed in 3.2.10.

14.2.5 Panel dimensions, number of pieces,
14.2.6 Effective thermal resistance for the reporting conditions shown in Table 1,
14.2.7 Standard-condition service life, along with the basis for determining this value. Either actual, measured panel performance, or a combination of measured performance data and a predictive calculation model as described in Appendix X1 are an acceptable basis, and
14.2.8 Date of manufacture.

15. Keywords

15.1 adsorbent; effective thermal resistance (effective R-value); superinsulation; thermal conductivity; thermal resistance; vacuum insulation

ANNEX

(Mandatory Information)

A1. ADDITIONAL SAFETY CONSIDERATIONS

A1.1 When applying these products, consider that temperatures of some cryogens, that is, liquid nitrogen, neon, helium, and hydrogen, are low enough to condense or solidify atmospheric gases. During such behavior oxygen enrichment of the condensed or solidified gases is likely to occur. For insulation systems that include organic constituents, contact with oxygen enriched gases constitute a fire and explosion hazard. Caution shall be taken to exclude atmospheric gases from these insulations where such oxygen enrichment could occur.

A1.2 When applying these products to a hot surface operating above 40°C, care shall be taken to avoid burns. Consult the manufacturer or Guide C1055 for hazard evaluation.

A1.3 The manufacturer shall provide the purchaser information regarding any hazards and recommended protective measures to be employed in the safe installation and use of the material.

APPENDIXES

(Nonmandatory Information)

X1. PANEL AGING CALCULATIONS

X1.1 The high thermal resistances achieved by VIPs are primarily due to elimination of the gas-phase conduction coupled with some degree of opaqueness. The VIP, therefore, must be designed to resist the inward transport of air, water vapor, or any other gases. The useful life of a VIP is the time required for the interior pressure to increase to a point where gas-phase conduction becomes a factor. As the absolute pressure inside a VIP increases due, for example, to inward diffusion of air, the thermal resistivity decreases to that of an air-filled bed at atmospheric pressure. (5) Fig. X1.1 shows the typical shape of the thermal conductivity curve as a function of panel pressure. (Note that the pressure axis shown in this figure is logarithmic.) This data for apparent thermal conductivity as a function of pressure can be combined with data for pressure as a function of time to obtain thermal resistivity as a function of time. (5) This type of analysis is crucial for VIPs with permeable panel barriers or for VIPs with filler or panel barrier materials that will outgas into the interior volume.

Note X1.1—If the dominant contributor toward the increased interior pressure is the outgassing of the panel barrier or VIP filler, then the pertinent gas is not air and the relationship between internal gas pressure and panel thermal resistance must be measured using the appropriate gas mixture.

X1.2 For the time period of interest, that is during the time when the internal pressure is much less than the external pressure, the pressure increase is linear and the diffusive and
out-gassing effects of multiple gases are additive, as are the effect of diffusion through the surfaces and the edge seals of the panel barrier.

X1.3 The effect of any one gas diffusing through the panel barrier or edge seal will cause the pressure within the panel to rise according to Eq X1.1 (11).

\[P_i(\tau) = P_{i,1} + (P_{init,i} - P_{i,1}) e^{-k_{Surface} \frac{A_{Surface} RT \rho_o}{M_i} \tau} \]

\[P_i(\tau) = P_{i,1} + (P_{init,i} - P_{i,1}) e^{-k_{Edge} \frac{A_{Edge} RT \rho_o}{M_i} \tau} \]

NOTE X1.2—Both equations in Eq X1.1 include the initial partial pressure. If the barrier and edge seal partial pressures are added (as opposed to being combined into a single diffusion constant as discussed below), then the initial pressure should be subtracted from the sum.

X1.4 The outgassing effects of the core and panel barrier materials are represented by the semi-empirical law quoted in the literature as shown in Eq X1.2, where \(g(\tau) \) is the specific outgassing rate at time, \(\tau \), \(g_u \) is the limiting outgassing rate after very large periods of time, \(g_0 \) is the desorbed amount after 1 h, and \(\alpha \) is a parameter related to the desorption mechanism, its value being usually comprised between 0.5 and 1, depending on the gas specie considered (6). The values of \(g_u \) and \(\alpha \) must be empirically determined for the specific filler and panel barrier materials. The specific outgassing rate given in Eq X1.2, sometimes specified in terms of torr-liter/cm2-hour, reflects the effect of the partial pressure of the pertinent gas surrounding the material.

\[g(\tau) = g_u + g_0 (\tau^{\alpha})^{-1} \]

NOTE X1.3—One apparatus capable of making these measurements consists of bakeable stainless steel high vacuum benches equipped with a quadrupole mass spectrometer. The specimen is placed within a small glass container which is evacuated to a very low pressure and then sealed. The pressure within this volume is monitored over several days and small specimens of the gas within the volume are periodically withdrawn and admitted to the mass spectrometer for partial pressure measurement. The gas background desorbed by the experimental bench shall be taken into account by carrying out a blank run prior to each analysis. The outgassing data are then interpolated according to Eq X1.2.

\[\Delta P_i = \Delta \tau \left(g_u + g_0 (\tau^{\alpha})^{-1} \right) \]

\[P_i = P_{init,i} + \Delta P_i \]

NOTE X1.4—The limiting value, \(g_u \), is typically negligible for small time values, but in a vacuum panel lifetime calculation, it must be included.

NOTE X1.5—The area, \(A \), in Eq. X1.3 must correspond to the area basis used to determine the specific outgassing rate, \(g \). This area could correspond to the simple geometric measurement of a foam block or the interior surface of the barrier material. However, it could also correspond to the much greater exposed surface area of a fine powder or the open surface area within an open-celled foam.
X1.6 Since total pressure evolution in the panel is the sum of the various gas partial pressure contributions, the internal pressure of the VIP (again neglecting any adsorbent effect) varies with time according to the equation:

\[P(\tau) = \sum_{i=1}^{\text{i-number of gas specie}} \left(P_{i, \text{edge diffusion}} + P_{i, \text{barrier diffusion}} + P_{i, \text{core outgas}} + P_{i, \text{barrier outgas}} \right) \]

\[(X1.4) \]

X1.7 To evaluate the pressure increase as a function of time and hence the service life in a VIP it is necessary to know, by literature or experiments, the value of the various parameters in Eq X1.1 and Eq X1.2. In principle, these values can be different depending on the type of core and panel barrier materials used for VIP manufacturing. Some of these values are difficult to measure. For example, some experimental techniques (such as that described in Appendix X3) may measure the sum of the diffusion rates through the surface and the edge seals rather than the individual diffusion coefficients. In that case, the two equations shown in Eq X1.1 would be combined into a single equation.

X1.8 Special materials can be included inside the VIP to adsorb gas molecules and thus counteract their effect on the internal pressure. However, at some point, the adsorbent material will become saturated and the internal pressure will begin to rise. Also, the adsorbent material may be designed to collect only certain types of molecules. The effect of an adsorbent must therefore be carefully considered because of these two characteristics: an adsorbent has a finite capacity and it may adsorb some gases preferentially. An adsorbent of capacity \(G \) (stated in units of pressure · volume) can reduce the total pressure by an amount equal to that capacity divided by the VIP internal volume. However, the specific adsorption capacity for each gas must be considered separately. If the calculated partial pressure for any gas specie is negative, that indicates that there is more capacity in the absorbent material than has been used, and the partial pressure for that gas specie at that point in time would be zero.

\[P_\tau = \sum_{i=1}^{\text{i-number of gas specie}} \left(P_{i, \text{edge diffusion}} + P_{i, \text{barrier diffusion}} + P_{i, \text{core outgas}} + P_{i, \text{barrier outgas}} - \frac{G_i}{V} \right) \]

\[(X1.5) \]

X1.9 The service life is equal to the time that corresponds to the maximum pressure identified previously as corresponding to the minimum acceptable thermal resistance for the gas mixture composition that will be present within the panel.

X2. ADDITIONAL TESTING

X2.1 For some applications, additional performance tests may be appropriate. For example, if the vacuum insulation panels are to be incorporated into shipping containers or other mobile structures, it may be prudent to ask for vibration or drop tests, such as those described in Test Method D999 or IEC68-2-6, Part 2, Test F. Other appropriate packaging tests may be found in Test Methods D3103 and D4169. The purchaser may also wish to specify the required puncture resistance which can be measured using test methods such as Technical Association of Pulp and Paper Industry (TAPPI) Standard TAPPI T803, 10.7 of Specification C1136, and Test Method D3763. If the VIP is to be located in an environment where attack by chemical action is possible, appropriate durability tests shall be specified. Other tests may be specified to verify the integrity of the evacuated assembly, such as Test Method E493. If the panel will be subjected to transverse loads, the flexural properties may be specified using Test Method C203. The required edge seal strength is related to the desired service life of the panel and can be measured using Test Method F88.

X2.2 Additional testing shall be performed by the user if the vacuum panels are exposed to excursions to high temperature either during installation or use. Examples of such temperature excursion sources are: devices which output high heat near a vacuum panel, use of hot melt adhesives, or use of polyurethane foam which undergoes an exothermic reaction during foam formation around a vacuum panel. Users shall consider the potential impact of these short term effects on panel dimensions and insulation performance. Some of these impacts may be related to changes in the permeability of the panel barrier or the edge seals or in the core microstructure or to outgassing from either the panel core or panel barrier material.

X2.3 Similar to temperature excursions, panel exposure to certain chemical environments could affect panel barrier permeance and therefore panel performance and service life. The user may wish to perform additional tests if the panels will be exposed to such chemicals.
X3. MEASUREMENT TECHNIQUE FOR PANEL BARRIER PERMEABILITY

X3.1 This low-volume panel membrane permeability measurement procedure is described fully in (7).

NOTE X3.1—This technique measures the combined permeability of the panel barrier material and the panel barrier seams.

X3.2 Construct an evacuated panel with a nearly solid filler so that the free volume is known and is only 1 to 5 % of panel volume. The filler material shall be chosen to avoid or minimize outgassing as well. Place panel in controlled environment (controlled: surrounding gas, temperature, time). The panels shall be supported by a grill-like structure to maximize the surface exposure to the gas environment. Measure the panel internal pressure (the hand-held gage described in Ref. (4) works well on these panels) over multiple time increments. Plot \(\ln((P - P_v)/(P_{int} - P_v)) \) versus time; where \(P_v \) is the environmental pressure and \(P_{int} \) is the initial pressure inside the panel.

The slope of the line, determined using a standard least squares regression technique, is relatable to the permeance of the gas through the panel barrier and edge seals of the panel barrier material and the internal free volume, \(V \), of the VIP as follows:

\[
\text{SLOPE} = \frac{d(\ln((P - P_v)/(P_{int} - P_v)))}{dt} (\frac{-\rho ATR d_0}{VM}) \quad (X3.1)
\]

where: \(\tau \) is time, \(\rho \) is the gas permeance, \(A \) is the permeating surface area of the VIP panel barrier material, \(T \) is the test temperature, \(R \) is the ideal gas constant, \(d_0 \) is the density of the gas at standard temperature and pressure, \(V \) is the VIP internal free volume, and \(M \) is the molecular weight of the permeating gas. The steady state permeance can be calculated from the linear slope since all the other parameters are known.

X4. HISTORY OF THE SPECIFICATION

X4.1 Vacuum insulation systems have long been used for cryogenic applications. These systems have historically consisted of multi-layer evacuated jackets with active vacuum systems. In the early 1990s, sealed evacuated panels became commercially available. These panels were filled with either fiberglass or silica and had either metal or plastic barriers. The continuing design evolution includes open-celled foam and advanced powdered fillers, specialty multi-layer films, and the inclusion of new adsorbent systems. In order to help potential users understand the performance of these panels, a task group was formed in 1995 to create an ASTM material specification.

This specification is the result of these on-going efforts. Due to the complexity of this non-homogenous insulation form, several appendices have been included to give testing advice. In 2007, the standard was updated to remove a portion of the test information as it became available in a separate test practice. It is anticipated that the task group will address the need for standard test methods in the near future. Also, expansion of the specification to nonplanar evacuated shapes is likely, and insulation types and classes will be added as the market develops.

REFERENCES

